Ingesting Avro messages

How to ingest Avro messages

In this recipe we'll learn how to ingest Avro messages from Apache Kafka into Apache Pinot. The Avro schema will be stored in the Confluent Schema Registry, so we'll learn how to integrate with that as well.

Watch the following video about ingesting Avro encoded messages into Apache Pinot, or follow the tutorial below, starting with Prerequites.

Prerequisites

To follow the code examples in this guide, you must install Docker (opens in a new tab) locally and download recipes.

Navigate to recipe

  1. If you haven't already, download recipes.
  2. In terminal, go to the recipe by running the following command:
cd pinot-recipes/recipes/ingest-avro

Launch Pinot Cluster

You can spin up a Pinot Cluster by running the following command:

docker-compose up

This command will run a single instance of the Pinot Controller, Pinot Server, Pinot Broker, Kafka, Zookeeper, and the Confluent Schema Registry. You can find the docker-compose.yml (opens in a new tab) file on GitHub.

Data Generator

This recipe contains a data generator that creates events with data about people.

It uses the Faker library (opens in a new tab), so you'll first need to install that:

pip install faker

You can generate data by running the following command:

python datagen.py 2>/dev/null  | head -n1 | jq

Output is shown below:

{
  "ts": 1680614486181,
  "person": {
    "id": "43e44826-44f5-4474-9a12-6740bfc0e7d8",
    "name": "Elizabeth Morales",
    "email": "qmyers@example.com",
    "age": 40,
    "address": {
      "street_address": "2555 Garza Trafficway",
      "city": "Denisefurt",
      "state": "Nebraska",
      "country": "Mauritania"
    },
    "phone_number": "001-901-538-1610x7283",
    "job": {
      "company": "Reynolds, Hansen and Alexander",
      "position": "Psychotherapist, dance movement",
      "department": "harness robust eyeballs"
    },
    "interests": [
      "Music"
    ],
    "friend_ids": [
      "34ba8e1f-4d94-4624-9920-8c32bb2e0e2e"
    ]
  }
}

Avro Schema

The Avro schema for our messages is described below:

{
  "type": "record",
  "name": "PersonMessage",
  "namespace": "ai.startree",
  "fields": [
    {"name": "ts", "type": "long"},
    {
      "name": "person",
      "type": {
        "type": "record",
        "name": "Person",
        "fields": [
          {"name": "id", "type": "string"},
          {"name": "name", "type": "string"},
          {"name": "email", "type": "string"},
          {"name": "age", "type": "int"},
          {
            "name": "address",
            "type": {
              "type": "record",
              "name": "Address",
              "fields": [
                {"name": "street_address", "type": "string"},
                {"name": "city", "type": "string"},
                {"name": "state", "type": "string"},
                {"name": "country", "type": "string"}
              ]
            }
          },
          {"name": "phone_number", "type": "string"},
          {
            "name": "job",
            "type": {
              "type": "record",
              "name": "Job",
              "fields": [
                {"name": "company", "type": "string"},
                {"name": "position", "type": "string"},
                {"name": "department", "type": "string"}
              ]
            }
          },
          {"name": "interests", "type": [{"type": "array", "items": "string"}, "null"]},
          {"name": "friend_ids", "type": [{"type": "array", "items": "string"}, "null"]}
        ]
      }
    }
  ]
}

avro/person-topic-value.avsc

Kafka ingestion

We're going to ingest the stream of people into Kafka using the Kafka Python client. We'll need to install the following libraries:

pip install avro confluent-kafka

We're going to stream the messages produced by datagen.py into the following script:

import json
import sys
from confluent_kafka.avro import AvroProducer
from confluent_kafka import avro
 
def kafka_producer(schema_name):
    producer_config = {
        'bootstrap.servers': 'localhost:9092',
        'schema.registry.url': 'http://localhost:8081', 
        'broker.address.family': 'v4'
    }
 
    value_schema = avro.load(f"avro/{schema_name}-value.avsc")
    producer = AvroProducer(producer_config, default_value_schema=value_schema)
    return schema_name, producer
 
if __name__ == "__main__":
    topic_name, producer = kafka_producer(schema_name="person-topic")
 
    while True:
        line = sys.stdin.readline().rstrip('\n')
        if not line:
            break
        event = json.loads(line)
        producer.produce(topic = topic_name, value = event)
        producer.flush()

kafkaproducer.py

This script first creates a Kafka producer that knows about the Avro schema and schema registry. It then infinitely ingests an infinite stream from stdin and writes Avro messages to Kafka.

We can combine the data generator script with this one by running the following code:

python datagen.py | python kafkaproducer.py

Once we've done that, let's check the messages are being ingested into the person-topic using kcat:

kcat -C -b localhost:9092 -t person-topic \
  -r localhost:8081 -s value=avro \
  -o end -c1 | 
jq

The output is shown below:

{
  "ts": 1680615014367,
  "person": {
    "id": "04da5a02-4984-46d7-83e4-1e769235e2ab",
    "name": "Wayne Jacobs",
    "email": "austinpittman@example.org",
    "age": 22,
    "address": {
      "street_address": "571 Shaun Corner",
      "city": "Port Marcfort",
      "state": "Florida",
      "country": "Argentina"
    },
    "phone_number": "595.121.1530x308",
    "job": {
      "company": "Gentry-Castillo",
      "position": "Broadcast journalist",
      "department": "innovate enterprise channels"
    },
    "interests": null,
    "friend_ids": null
  }
}

Next, we're going to ingest the stream into Pinot.

Pinot schema and table

Our Pinot schema is shown below:

{
    "schemaName": "people",
    "dimensionFieldSpecs": [
      {"name": "person.id", "dataType": "STRING"},
      {"name": "person.name", "dataType": "STRING"},
      {"name": "person.email", "dataType": "STRING"},
      {"name": "person.age", "dataType": "INT"},
      {"name": "person.address.street_address", "dataType": "STRING"},
      {"name": "person.address.city", "dataType": "STRING"},
      {"name": "person.address.state", "dataType": "STRING"},
      {"name": "person.address.country", "dataType": "STRING"},
      {"name": "person.phone_number", "dataType": "STRING"},
      {"name": "person.job.company", "dataType": "STRING"},
      {"name": "person.job.position", "dataType": "STRING"},
      {"name": "person.job.department", "dataType": "STRING"},
      {"name": "person.interests", "dataType": "STRING", "singleValueField": false},
      {"name": "person.friend_ids", "dataType": "STRING", "singleValueField": false}
    ],
    "metricFieldSpecs": [
    ],
    "dateTimeFieldSpecs": [
      {"name": "ts", "dataType": "TIMESTAMP", "format": "1:MILLISECONDS:EPOCH", "granularity": "1:MILLISECONDS"}
    ]
  }

schema.json

And the table config is below:

{
    "tableName": "people",
    "tableType": "REALTIME",
    "segmentsConfig": {
      "timeColumnName": "ts",
      "timeType": "MILLISECONDS",
      "schemaName": "people",
      "replicasPerPartition": "1"
    },
    "tenants": {},
    "tableIndexConfig": {
      "loadMode": "MMAP",
      "streamConfigs": {
        "streamType": "kafka",
        "stream.kafka.consumer.type": "lowLevel",
        "stream.kafka.topic.name": "person-topic",
        "stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
        "stream.kafka.decoder.class.name": "org.apache.pinot.plugin.inputformat.avro.confluent.KafkaConfluentSchemaRegistryAvroMessageDecoder",        
        "stream.kafka.decoder.prop.format": "AVRO",
        "stream.kafka.decoder.prop.schema.registry.rest.url": "http://schema-registry:8081",
        "stream.kafka.decoder.prop.schema.registry.schema.name": "person-topic-value",
        "stream.kafka.broker.list": "kafka:9093",
        "stream.kafka.consumer.prop.auto.offset.reset": "smallest"
      }
    },
    "metadata": {
      "customConfigs": {}
    },
    "ingestionConfig": {
        "complexTypeConfig": {
            "delimiter": "."
          }
    },
    "routing": {
      "instanceSelectorType": "strictReplicaGroup"
    }
}

table.json

The highlighted section defines a decoder for processing Avro messages via the schema registry. The URL for the schema registry is defined along with the Avro schema name.

We can create the table and schema by running the following command:

docker run \
   --network ingestavro \
   -v $PWD/config:/config \
   apachepinot/pinot:1.0.0 AddTable \
     -schemaFile /config/schema.json \
     -tableConfigFile /config/table.json \
     -controllerHost "pinot-controller" \
    -exec

Querying Pinot

We can then run the following query via the Pinot UI (opens in a new tab):

select person.id, person.interests, person.age, person.address.country
from people 
where person.friend_ids <> 'null'
AND person.interests <> 'null'
and ARRAYLENGTH(person.interests) > 1
limit 10

The output will look something like this:

person.idperson.interestsperson.ageperson.address.country
311b5e5e-060a-45f3-b050-e7b9e268dceb["Photography","Cooking","Fashion","Running"]45Zambia
d29e52eb-41d8-4902-92fb-8ed6f51115b1["Cycling","Dancing","Music"]60Qatar
b1a0cf13-8daf-4120-865f-7ac3ae51c3c4["Yoga","Painting","Swimming"]48Sierra Leone
f774187e-ee0a-4a2f-abbb-e73ba86a1dfb["Music","Gardening"]67Belize
c47cf80b-8104-480f-a9de-046f10f4c3f0["Art","Meditation"]31Mayotte
c62586ff-24d9-43cb-9bb5-50b7e9a4a297["Painting","Yoga"]57Azerbaijan
175a0032-af11-4e58-8ab5-9bfbed70eabf["Baking","Fashion","Cooking","Baking","Gardening"]73Wallis and Futuna
82940700-00e1-4d3a-8333-d30165fec35a["Fashion","Fashion","Fishing"]35Saint Martin
f27d06e9-686e-42f3-a6d8-742c046ea3d7["Sports","Reading","Reading","Cycling","Traveling"]27Russian Federation
0f1189ce-77ae-46cb-9f78-bf841b9f7e86["Sports","Reading","Baking","Reading"]74Sri Lanka

Query Results