OFFSET_AGGREGATION
💡
Enterprise only
Compares current value to the value predicted by a naive model. The naive model is an average/median/percentile of historical values. The upper/lower bounds interval can be computed with an absolute or a percentage rule.
Inputs
"targetProperty": "current"
: The data on which to perform detection.
Parameters
name | description | default value |
---|---|---|
component.intervalsMethod | Method to compute intervals. In PERCENTAGE , ABSOLUTE . | |
component.sensitivity | Detection sensitivity. Eg with PERCENTAGE , set 50 for a 50% percentage change threshold. | |
component.lookbackPeriod | Historical period to use for training. In ISO-8601 (opens in a new tab) format. Requires component.monitoringGranularity , see shared parameters. Eg: P14D . | |
component.offsets | A list of offsets in ISO-8601 format to use as baseline. Eg [P7D , P14D ] will compare the current value to the aggregation of the values of the 2 previous weeks. | [P7D] |
component.aggregation | The aggregation function to use to combine historical values. In MEDIAN , AVERAGE , MIN , MAX and any of PCTXXXXX eg PCT05 (5th percentile), PCT95 , PCT999 (99.9th percentile). | AVERAGE |
offsets
and lookbackPeriod
must be compatible. Eg if offsets
is [P7D
, P14D
] then lookbackPeriod
should be at least P14D
.
Example
{
"name": "root",
"type": "AnomalyDetector",
"params": {
"type": "OFFSET_AGGREGATION",
"component.intervalsMethod": "ABSOLUTE",
"component.sensitivity": "200", # detect if abs(current-predicted)>200
"component.lookbackPeriod": "P28D",
"component.offsets": ["P7D", "P14D", "P21D", "P28D"],
"component.aggregation": "MEDIAN"
},
"inputs": [
{ # current data
"targetProperty": "current",
"sourcePlanNode": "currentData",
"sourceProperty": "currentOutput"
}
]
}