How to handle null values
In this recipe we'll learn how to handle null or missing values in Apache Pinot tables.
Pinot Version | 0.10.0 |
Code | startreedata/pinot-recipes/null-values |
Prerequisites
To follow the code examples in this guide, you must install Docker (opens in a new tab) locally and download recipes.
Navigate to recipe
- If you haven't already, download recipes.
- In terminal, go to the recipe by running the following command:
cd pinot-recipes/recipes/null-values
Launch Pinot Cluster
You can spin up a Pinot Cluster by running the following command:
docker-compose up
This command will run a single instance of the Pinot Controller, Pinot Server, Pinot Broker, and Zookeeper. You can find the docker-compose.yml (opens in a new tab) file on GitHub.
Dataset
We're going to import the following JSON file:
{"title": "Valentine's Day", "genre": "Comedy", "year": 2010, "id": 361248901147483647}
{"title": "The Ugly Truth", "year": 2009, "id": 332567813147483648}
{"title": "P.S. I Love You", "genre": "Romance", "year": 2007, "id": 346905752147483649}
{"title": "Dear John", "year": 2010, "id": 300441473147483650}
{"title": "The Curious Case of Benjamin Button", "genre": "Fantasy", "year": 2008, "id": 394030854147483651}
data/import.json
The Ugly Truth
and Dear John
are both missing a value for genre
, which we'll explore in this guide.
Pinot Schema and Table
Now let's create a couple of Pinot Schemas and Table. We're going to create one table where nulls are allowed and one where they aren't. We need to create one schema per table even though they will be identical except for the name.
{
"schemaName": "movies_nulls",
"dimensionFieldSpecs": [
{
"name": "id",
"dataType": "LONG"
},
{
"name": "title",
"dataType": "STRING"
},
{
"name": "genre",
"dataType": "STRING"
},
{
"name": "year",
"dataType": "INT"
}
]
}
config/schema.json
And the schema for the no-nulls table:
{
"schemaName": "movies_no_nulls",
"dimensionFieldSpecs": [
{
"name": "id",
"dataType": "LONG"
},
{
"name": "title",
"dataType": "STRING"
},
{
"name": "genre",
"dataType": "STRING"
},
{
"name": "year",
"dataType": "INT"
}
]
}
config/schema.json
We're also going to create two tables: one that allows null values and one that doesn't.
This table doesn't handle null values:
{
"tableName": "movies_no_nulls",
"tableType": "OFFLINE",
"segmentsConfig": {
"replication": 1,
"schemaName": "movies_no_nulls"
},
"tenants": {
"broker": "DefaultTenant",
"server": "DefaultTenant"
},
"tableIndexConfig": {
"loadMode": "MMAP"
},
"ingestionConfig": {
"batchIngestionConfig": {
"segmentIngestionType": "APPEND",
"segmentIngestionFrequency": "DAILY"
}
},
"metadata": {}
}
config/table_no_nulls.json
You can create the table by running the following command:`
docker run \
--network null-values \
-v $PWD/config:/config \
-v $PWD/data:/data \
apachepinot/pinot:1.0.0 LaunchDataIngestionJob \
-jobSpecFile /config/job-spec.yml \
-values tableName='movies_no_nulls'
And this table allows null values:
{
"tableName": "movies_nulls",
"tableType": "OFFLINE",
"tableIndexConfig": {
"loadMode": "MMAP",
"nullHandlingEnabled": "true"
},
"segmentsConfig": {
"replication": 1,
"schemaName": "movies_nulls"
},
"tenants": {
"broker": "DefaultTenant",
"server": "DefaultTenant"
},
"ingestionConfig": {
"batchIngestionConfig": {
"segmentIngestionType": "APPEND",
"segmentIngestionFrequency": "DAILY"
}
},
"metadata": {}
}
config/table_nulls.json
The highlighted config is how we indicate that we want this table to have null values.
You can create the table by running the following command:`
docker run \
--network null-values \
-v $PWD/config:/config \
-v $PWD/data:/data \
apachepinot/pinot:1.0.0 LaunchDataIngestionJob \
-jobSpecFile /config/job-spec.yml \
-values tableName='movies_nulls'
Ingestion Job
Now we’re going to import the JSON file into these tables. We'll do this with the following ingestion spec:
executionFrameworkSpec:
name: 'standalone'
segmentGenerationJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentGenerationJobRunner'
segmentTarPushJobRunnerClassName: 'org.apache.pinot.plugin.ingestion.batch.standalone.SegmentTarPushJobRunner'
jobType: SegmentCreationAndTarPush
inputDirURI: '/data'
includeFileNamePattern: 'glob:**/import.json'
outputDirURI: '/opt/pinot/data/${tableName}'
overwriteOutput: true
pinotFSSpecs:
- scheme: file
className: org.apache.pinot.spi.filesystem.LocalPinotFS
recordReaderSpec:
dataFormat: 'json'
className: 'org.apache.pinot.plugin.inputformat.json.JSONRecordReader'
tableSpec:
tableName: ${tableName}
pinotClusterSpecs:
- controllerURI: 'http://pinot-controller-nulls:9000'
pushJobSpec:
pushParallelism: 2
pushAttempts: 2
config/job-spec.yml
The import job will map fields in each JSON document to a corresponding column in the movies
schema.
You can run the following command to run the import on the movies_no_null
table:
docker run \
--network null-values \
-v $PWD/config:/config \
-v $PWD/data:/data \
apachepinot/pinot:1.0.0 LaunchDataIngestionJob \
-jobSpecFile /config/job-spec.yml \
-values tableName='movies_no_nulls'
And the following to run the import on the movies_nuls
table:
docker run \
--network null-values \
-v $PWD/config:/config \
-v $PWD/data:/data \
apachepinot/pinot:1.0.0 LaunchDataIngestionJob \
-jobSpecFile /config/job-spec.yml \
-values tableName='movies_nulls'
Querying
Once that's completed, navigate to localhost:9000/#/query (opens in a new tab) and run the following query to return the rows that have a genre and year in the movies_no_nulls
table:
select *
from movies_no_nulls
WHERE genre IS NOT NULL AND year IS NOT NULL;
You will see the following output:
genre | id | title | year |
---|---|---|---|
Comedy | 361248901147483647 | Valentine's Day | 2010 |
null | 332567813147483648 | The Ugly Truth | 2009 |
Romance | 346905752147483649 | P.S. I Love You | 2007 |
null | 300441473147483650 | Dear John | 2010 |
Fantasy | 394030854147483651 | The Curious Case of Benjamin Button | -2147483648 |
Query Results
We can see from the results that the null genres and null years haven't been filtered out for the movies_no_nulls
table.
The genre
and year
columns in the movies_nulls
table, on the other hand, supports null values, which we can see by running the following query:
select *
from movies_nulls
WHERE genre IS NOT NULL AND year IS NOT NULL;
You will see the following output:
genre | id | title | year |
---|---|---|---|
Comedy | 361248901147483647 | Valentine's Day | 2010 |
Romance | 346905752147483649 | P.S. I Love You | 2007 |
Query Results
Pinot still stores the same default values for those columns, but when null handling is enabled the query engine filters them out of the result set when evaluating the IS NOT NULL
clause.